Pengelolaan Data Analisis Pangan (Part 3)

Part 1Part 2

Penyajian Data Analisis

Dalam suatu analisis, data hasil analisis harus disajikan dengan benar dan mengikuti kaidah-kaidah yang ada. Penyajian data yang kurang tepat akan menyulitkan interpretasi dari data-data yang diperoleh. Pada bagian berikut akan dikemukakan pengambilan data numerik dari hasil analisis berdasarkan jumlah angka berartinya serta penyajian data komposisi yang merupakan data penting dalam analisis bahan pangan.

A. Angka Penting (Significant Figure)

Data numerik (angka) yang disajikan dari hasil suatu analisis seharusnya berupa angka penting untuk mengindikasikan sensitivitas dan reabilitas dari suatu metode analisis, namun ada kalanya angka penting dari suatu data dihilangkan tetapi sebaliknya angka tidak berarti yang dipertahankan. Untuk itu diperlukan beberapa aturan pasti untuk menentukan angka penting dari hasil suatu analisis seperti penjelasan berikut.

1. Angka yang tidak mengandung unsur 0

Angka yang tidak mengandung unsur 0, semua digitnya dinyatakan sebagai angka penting. Misalnya 64,72 mempunyai 4 angka penting, 343 mempunyai 3 angka penting dan 5,3245 mempunyai 5 angka penting.

2. Angka yang mengandung unsur 0

Unsur 0 pada suatu angka dapat menjadi angka penting atau angka tidak penting tergantung pada posisinya. Penentuan angka penting untuk angka yang mengandung unsur 0 menggunakan aturan sebagai berikut.

a. Unsur 0 setelah tanda desimal adalah angka penting. Sebagai contoh, 56,630 dan 56,600 keduanya mempunyai 5 angka penting.

b. Unsur nol sebelum tanda desimal dengan tidak ada digit lain sebelumnya adalah bukan angka penting. Sebagai contoh, 0,5663 hanya mempunyai 4 angka penting.

c. Unsur 0 setelah tanda desimal tidak penting bila tidak ada digit sebelum tanda desimal. Sebagai contoh, 0,0056 tidak mempunyai digit sebelum tanda desimal maka dapat dikatakan mempunyai 2 angka penting. Tetapi angka 1,0056 dikatakan mempunyai 5 angka penting karena terdapat angka 1 sebelum tanda desimal.

d. Unsur 0 yang terletak setelah angka bukan nol pada angka yang tidak mengandung tanda desimal bukan angka penting. Sebagai contoh, angka 7.000 hanya mempunyai 1 angka penting. Tetapi angka 7.000,0 mempunyai 5 angka penting.

Penentuan unsur 0 sebagai angka penting seperti cara di atas kadangkadang bisa membingungkan, cara yang lebih mudah adalah dengan menggunakan bentuk eksponensial. Sebagai contoh, 7.000 dapat dikonversi menjadi 7 x 103 yang memiliki 1 angka penting. Demikian halnya dengan 7.000,0 dapat dikonversi menjadi 7 x 103 dengan tetap mempertahankan unsur nol, angka tersebut tetap memiliki 5 angka penting.

Jika ingin mengkonversi 0,007 ke dalam bentuk eksponensial maka akan berubah menjadi 7 x 10-3 dan dikatakan memiliki 1 angka penting.

3. Angka penting dari operasi aritmatika

Angka penting dari hasil operasi aritmatika (penambahan, pengurangan, perkalian dan pembagian) ditentukan berdasarkan angka yang mempunyai angka penting paling sedikit. Untuk memudahkan penentuan, angka-angka yang terlibat dalam operasi sebaiknya dijabarkan secara rinci dan hasil akhir yang diperoleh dibulatkan pada angka yang terdekat.

Sebagai contoh, 23,56 x 4,3 x 154 = 15601,432 karena 4,3 hanya memiliki 2 angka penting maka yang dilaporkan adalah 16.000. Cara seperti di atas mudah dilakukan untuk kebanyakan perhitungan kecuali pada penambahan atau pengurangan angka-angka yang mengandung unsur desimal. Pada kasus tersebut, jumlah angka penting pada nilai akhir ditentukan banyaknya angka yang berada di belakang tanda desimal.

Sebagai contoh, penambahan 5,43 + 3,764 = 9,194 karena 5,43 hanya mempunyai 2 angka di belakang tanda desimal maka hasil penambahan tersebut dibulatkan menjadi 9,19. Demikian juga dengan pengurangan, sebagai contoh, 87,9 – 74,12 = 13,78 karena 87,9 hanya memiliki 1 angka di belakang tanda desimal maka hasil pengurangan tersebut dibulatkan menjadi 13,8.

Jika tidak dilakukan dengan hati-hati, penentuan angka penting seperti yang telah dijelaskan di atas dapat menimbulkan kurangnya sensitivitas hasil pengukuran. Sebagai contoh, pada penentuan konsentrasi kafein dari suatu sampel diperoleh hasil 43,5 ppm. Sebelum dianalisis contoh tersebut diencerkan 50 kali dengan menggunakan labu takar.

Untuk mengetahui konsentrasi kafein sebenarnya pada sampel hasil pengukuran tersebut dikalikan dengan pengenceran, yaitu 43,5 ppm x 50 = 2.175 ppm. Menurut aturan yang telah dijelaskan sebelumnya hasil yang dilaporkan adalah 2.000 ppm karena 50 hanya memiliki 1 angka penting.

Angka yang dilaporkan tersebut menjadi kurang sensitif karena tidak memperhatikan ketelitian labu takar yang digunakan untuk pengenceran. Labu takar biasanya mempunyai toleransi 0,05 ml, oleh karena itu faktor pengenceran sebaiknya ditulis menjadi 50,0. Dengan cara tersebut dapat meningkatkan 2 angka penting sehingga hasil pengukuran kafein tersebut dapat dilaporkan menjadi 2.180 ppm.

Dari contoh tersebut di atas dapat dilihat perhatian terhadap angka penting dari suatu data sangat diperlukan untuk memperoleh data yang baik. Aturan penentuan angka penting seperti yang sudah dijelaskan akan sangat membantu, namun hal ini tidak selamanya berjalan baik apabila nilai individu dari setiap data tidak diperhatikan ketelitiannya.

B. Penyajian Data Komposisi

Pada dasarnya, setiap analisis ditujukan untuk menentukan masa atau berat komponen atau senyawa yang terdapat dalam sampel. Hasil-hasil numerik yang diperoleh dari analisis dihitung menjadi persen berat atau ekspresi lainnya yang pada dasarnya sama dengan rasio berat per berat.

Masa atau berat komponen dalam sampel dihitung dari penetapan suatu parameter yang besarannya merupakan fungsi dari masa komponen-komponen tersebut dalam sampel. Sebagian besar parameter ini memang pada dasarnya tergantung pada penetapan masanya.

Sebagai contoh misalnya penyerapan sinar atau penyerapan bentuk-bentuk lain dari energi radiasi merupakan fungsi dari jumlah molekul-molekul, atom-atom, atau ion-ion yang terdapat dalam sampel yang menyerap sinar tersebut.

Sebagian parameter lagi memang tidak tergantung pada penetapan masanya, misalnya indeks bias dan berat jenis. Meskipun demikian, parameter-parameter ini dapat digunakan secara tidak langsung untuk menentukan masa sampel.

Oleh karena itu, indeks bias dapat digunakan untuk menetapkan padatan-padatan terlarut, terutama gula dalam sampel sirup atau sari buah dan kadar etanol dalam minuman beralkohol dapat ditentukan dengan mengukur berat jenis atau kerapatannya.

Pencantuman data numerik dari suatu parameter hasil analisis harus memperhatikan jumlah digit (angka) berarti dari suatu data yang tinggi. Hal ini tentunya sangat berpengaruh terhadap sensitivitas dan ketepatan dalam melaporkan.

Dalam melaporkan data hasil analisis, baik dasar rujukan maupun satuan satuan yang digunakan seharusnya diutarakan dengan jelas. Data komposisi dapat dinyatakan baik sebagai berat segarnya atau sebagai berat bebas airnya (dry basis). Mungkin juga data yang dilaporkan dinyatakan sebagai berat pada saat dibeli (AP=as purchased) atau sebagai berat bahan yang dapat dimakan (EP=edible portion).

Yang terakhir ini digunakan karena sebagian bahan pangan dimakan hanya bagian tertentunya saja, sedangkan bagian yang lainnya seperti kulit, biji, atau batangnya dibuang. Data hasil analisis dapat juga dinyatakan sebagai persentase berat maupun persentase volume. Dalam hal ini komposisi dari suatu sampel cairan sering dinyatakan dalam 9 per 100 ml.

Jika komponen dalam sampel terdapat dalam jumlah yang terlalu kecil, hasil analisis dapat dinyatakan dalam ppm
(
part per million=bagian seperjuta), mg per kg atau mg per liter, atau dalam hal vitamin dapat dinyatakan sebagai mikrogram per 100 g atau 100 ml. Kandungan mineral dapat dinyatakan berdasarkan berat abu atau berat
segarnya.

Kadar air merupakan data komposisi yang sangat penting dalam bahan pangan maupun produk pangan karena kadar air sangat menentukan kadarkadar komponen yang lainnya. Jika suatu sampel kadar airnya rendah karena
sebagian besar telah menguap maka kadar-kadar komponen lainnya naik, dan demikian juga sebaliknya.

Oleh karena itu, di dalam menyatakan suatu komposisi, kadar air harus selalu dicantumkan, atau sampel tersebut dinyatakan dalam keadaan bebas air atau dry basis. Pernyataan yang salah dalam mengungkapkan data komposisi akan sangat membingungkan.

Sering hal demikian dialami dalam menyajikan data perubahan komposisi karena penyimpanan, misalnya dengan menyatakan kenaikan kadar protein padahal kenaikannya tersebut hanya disebabkan karena turunnya kadar air.
Untuk menyatakan data berdasarkan bahan kering atau
dry basis, berikut ini adalah suatu contoh perhitungannya.

Penyajian data komposisi berdasarkan bahan kering sangat penting terutama dalam suatu transaksi perdagangan karena sifatnya yang tetap dan tidak berfluktuasi. Dengan demikian perhitungan harga dapat didasarkan pada suatu patokan yang tetap. Sebaliknya dari data komposisi berdasarkan bahan kering dapat dikembalikan ke data komposisi bahan segar dengan mudah dengan cara memperhitungkan kadar air bahan segarnya.

Sering data komposisi dinyatakan sebagai komponen yang paling dominan, seperti halnya dalam menyatakan kadar asam. Oleh karena itu, mungkin saja kadar total asam dinyatakan sebagai dasar asam tertitrasi total sebagai asam asetat tergantung pada asam yang mana yang dianggap paling dominan dalam sampel tersebut.

Jadi biasanya kadar asam produk-produk jeruk atau sitrus dinyatakan sebagai asam sitrat, asam tartarat untuk anggur, dan asam malat untuk apel. Sedangkan kadar asam menguap pada produk fermentasi biasanya dinyatakan sebagai asam asetat.

Dalam menyatakan komposisi karbohidrat, umumnya semua senyawa yang mampu mereduksi larutan tembaga tartarat basa diasumsikan sebagai gula-gula pereduksi dan dinyatakan sebagai dekstrosa. Kadar sukrosa dan pati lebih sulit dinyatakan karena kandungannya sangat tergantung pada jenis metode analisis yang digunakan.

Sering dalam bidang perdagangan dan dalam bidang industri digunakan penyajian data berdasarkan pengujian-pengujian yang dilakukan secara empiris, khususnya dalam penyajian data analitis untuk lemak dan minyak.

Ketidakjenuhan dalam asam-asam lemak sering dinyatakan dalam bilangan iodine atau g iodine yang terserap per 100 g lemak atau minyak. Karboksilkarboksil yang teresterifikasi dinyatakan dengan bilangan penyabunan, yaitu
Mg KOH yang dibutuhkan untuk menyabunkan 1 g lemak atau minyak.

Asam-asam menguap total dinyatakan dalam bilangan asam, yaitu ml NaOH 0.1N yang dibutuhkan untuk menetralkan asam-asam yang terdestilasi dalam asam sulfat yang ditambahkan dari 5 g lemak atau minyak dan sebagainya.

Daftar Pustaka

Apriyantono, A., D. Fardiaz, N.L. Puspitasari, S. Yasni dan S. Budiyanto. (1989). Petunjuk Praktikum Analisis Pangan. Bogor: IPB Press.

Fardiaz, D., N.L. Puspitasari, dan C.H. Wijaya. (1991). Analisis Pangan (Monograf). Laboratorium Kimia dan Biokimia Pangan. IPB: PAU Pangan dan Gizi.

Nielsen, S.S. (2003). Food Analysis. 3rd ed. New York: Kluwer Academic/Plenum Publishers.

Pomeranz, Y. dan Meloan, C.E. (1994). Food Analysis Theory and Practice. 3rd ed. Maryland: Aspen Publishers.

James, C.S. (1995). Analytical Chemistry of Foods. London: Blackie Academic and Professional.

Sumber:

Judul: Pengelolaan Data Analisis Pangan

Penulis:

Dr.Ir. Nuri Andarwulan, M.Si.
Dr.Ir. Feri Kusnandar, M.Sc.
Dian Herawati, STP.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *